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location cannot be performed unless the tillage regime and soil nitrogen at sy are known. This
is a feature of all regression methods and should not be construed as a shortcoming. If the
modeler determines that Y depends on X and the value of X is unknown the model cannot be
used to produce a prediction of Y.

9.5 Spatial Regression and Classification Models

9.5.1 Random Field Linear Models

A spatial regression or classification model is a model for geostatistical data where interest
lies primarily in statistical inference about the mean function E[Z(s)] = u(s). The most
important application of these models in the crop and soil sciences is the analysis of field
experiments where the experimental units exhibit spatial autocorrelation. The agricultural
variety trial is probably the most important type of experiment to which the models in this
section can be applied, but any situation in which E[Z(s)] is modeled as a function of other
variables in addition to a spatially autocorrelated error process falls under this heading.
Variety trials are particularly important here because of their respective size. Randomization
of treatments to experimental units neutralizes the effects of spatial correlation among experi-
mental units and provides the framework for statistical inference in which cause-and-effect
relationships can be examined. These trials are often conducted as randomized block designs
and, because of the large number of varieties involved, the blocks can be substantial in size.
Combining adjacent experimental units into blocks in agricultural variety trials can be at
variance with an assumption of homogeneity within blocks. Stroup, Baenziger and Mulitze
(1994) notice that if more than eight to twelve experimental units are grouped, spatial trends
will be removed only incompletely. Although randomization continues to neutralize these
effects, it does not eliminate them as a source of experimental error.

Figure 9.25 shows the layout of a randomized complete block design conducted as a field
experiment in Alliance, Nebraska. The experiment consisted of 56 wheat cultivars arranged in
four blocks and is discussed in Stroup et al. (1994) and Littell et al. (1996).

Analysis of the plot yields in this RCBD reveals a p-value for the hypothesis of no
varietal differences of p = 0.7119 along with a coefficient of variation of CV = 27.58%. A
p-value that large should give the experimenter pause. That there are no yield differences
among 56 varieties is very unlikely. The large coefficient of variation conveys the consid-
erable magnitude of the experimental error variance. Blocking as shown in Figure 9.25 did
not eliminate the spatial dependencies among experimental units and left any spatial trends to
randomization which increased the experimental error. The large p-value is not evidence of
an absence of varietal differences, but of an experimental design lacking power to detect
these differences.

Instead of the classical RCBD analysis one can adopt a modeling philosophy where the
variability in the data from the experiment is decomposed into large-scale trends and smooth-
scale spatial variation. Contributing to the large-scale trends are treatment effects, determinis-
tic effects of spatial location, and other explanatory variables. The smooth-scale variation
consists of a spatial random field that captures, for example, smooth fertility trends.
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Figure 9.25. Layout of wheat variety trial at Alliance, Nebraska. Lines show block
boundaries, numbers identify the placement of varieties within blocks. There are four blocks
and 56 varieties. Drawn from data in Littell et al. (1996).

' In the notation of §9.4 we are concerned with the spatial mean model
Z(s) = p(s) +6(s),

where 8(s) is assumed to be 2 second-order stationary spatial process with semivariogram
~(h) and covariogram C(h). The mean model 1u(s) is assumed to be linear in the large-scale
effects, so that we can write

Z(s) = X(s)B + 6(s)- [9.54]

We maintain the dependency of the design/regressor matrix X(s) on the spatial location since
X(s) may contain, apart from design (e.g., block) and treatment effects, other variables that
depend on the spatial location of the experimental units, or the coordinates of observations
themselves although that is not necessarily so. Zimmerman and Harville (1991) refer to [9.54]
as a random field linear model. Since the spatial autocorrelation structure of §(s) is modeled
through a semivariogram Or covariogram we take a direct approach to modeling spatial
dependence rather than an autoregressive approach (in the vernacular of §9.3). This can be
rectified with the earlier observation that data from field experiments are typically lattice data
where autoregressive methods are more appropriate by considering each observation as
concentrated at the centroid of the experimental unit (see Ripley 1981, p. 94, for a contrasting
view that utilizes block averages instead of point observations).

The model for the semivariogram/covariogram is critically important for the quality of
spatial predictions in kriging methods. In spatial random field models, where the mean func-
tion is of primary importance, it turns out that it is important to do a reasonable job at mod-
eling the second order structure of §(s), but as Zimmerman and Harville (1991) note, treat-
ment comparisons are relatively insensitive to the choice of covariance functions (provided
the set of functions considered is a reasonable one and that the mean function is properly
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specified). Besag and Kempton (1986) found that inclusion of a nugget effect also appears to
be unnecessary in many field-plot experiments.

Before proceeding further with random field linear models we need to remind the reader
of the adage that one modeler's random effect is another modeler's fixed effect. Statistical
models that incorporate spatial trends in the analysis of field experiments have a long history.
In contrast to the random field models, previous attempts of incorporating the spatial structure
focused on the mean function p(s) rather than the stochastic component of the model. The
term trend analysis has been used in the literature to describe methods that incorporate covar-
iate terms that are functions of the spatial coordinates. In a standard RCBD analysis where Y;;
denotes the observation on treatment i in block j, the statistical model for the analysis of vari-
ance is

Yi; = p+ pj+ T+ €

where the experimental errors e;; are uncorrelated random variables with mean 0 and variance
o?. A trend analysis changes this model to

Yij = p+ 7+ O + e [9.55]

where 0y is a polynomial in the row and column indices of the experimental units (Brownie,
Bowman, and Burton 1993). If r;; is the k™ row and ¢, the It column of the field layout, then
one may choose O = ik + Paci + Bary + Bac? + Bsricl, for example, a second-order re-
sponse surface in the row and column indices. The difference to a random field linear model
is that the deterministic term ) is assumed to account for the spatial dependency between
experimental units. It is a fixed effect. It does, however, appeal to the notion of a smooth-
scale variation in the sense that the spatial trends move smoothly across block boundaries.
The block effects have disappeared from model [9.55]. Applications of these trend analysis
models can be found in Federer and Schlottfeldt (1954), Kirk, Haynes, and Monroe (1980),
and Bowman (1990). Because it is assumed that the error terms €;; remain uncorrelated they
are not spatial random field models in our sense and will not be discussed further. For a com-
parison of trend and random field analyses see Brownie et al. (1993).

A second type of model that maintains independence of the errors are the nearest-neigh-
bor models which are based on differencing observations with each other or by taking dif-
ferences between plot yields and cultivar averages. The Papadakis nearest-neighbor analysis
(Papadakis 1937), for example, calculates residuals between plot yields and arithmetic treat-
ment averages in the East-West and North-South direction and uses these residuals as co-
variances in the mean model (the 0y part of the trend analysis model). The Schwarzbach
analysis relies on adjusted cultivar means which are arithmetic means corrected for average
responses in neighboring plots (Schwarzbach 1984).

In practical applications it may be difficult to choose between these various approaches
to model spatial dependencies and to discriminate between different models. For example,
changing the fixed effects trend by including or eliminating terms in a trend analysis will
change the autocorrelation of the model residuals. Brownie and Gumpertz (1997) conclude
that it is necessary to account for major spatial trends as fixed effects in the model but also
that random field analyses are surprisingly robust to moderate misspecification of the fixed
trend and retain a high degree of validity of tests and estimates of precision. The reason, in
our opinion, is that a model which simultaneously models large- and small-scale stochastic
trends is able — within limits — to capture omitted trends in the mean model through the spa-
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tial dependency structure in the error process. Zimmerman and Harville (1991) refer to this
effect as the covariance function “soaking up” spatial heterogeneity that would otherwise be
fitted through fixed effects in the mean function. A trend analysis model or nearest-neighbor
model that assumes that the mean function is correctly specified and the errors are uncorrelat-
ed will be invalid if the mean function is not modeled properly. There is nothing in the error
structure that can “soak up” the ill-specification of the fixed effects.

9.5.2 Some Philosophical Considerations

Modeling data from a field experiment with random field methods seems like a win-win
situation. The modeler can add or delete terms to the fixed effects part of the model that cap-
ture large-scale trends and let the covariance function of the error process 6(s) pick up any
smooth-scale spatial, variation of the omitted effects. As always, there is no free lunch and the
analyst must be aware of the differences between modeling the data from a designed experi-
ment vs. relying on randomization theory. The classical analysis of an experimental design
stems from its underlying linear model which in turn is generated by the particular error-
control, treatment, and observational designs. The ability to perform cause-and-effect inferen-
ces rests on these design components. Randomization ensures that the unaccounted effects —
such as systematic spatial trends among the experimental units — are balanced out. This
implies that expectations are reckoned over the randomization distribution of the design. In
the Alliance, Nebraska wheat yield variety trial this distribution is formed by all possible
arrangements of the 56 treatments to the 56 X 4 = 224 experimental units. The observed out-
comes are considered fixed in the randomization approach. Assume, for a moment, that the
three rightmost columns of experimental units in Figure 9.25 are systematically different from
the other units. Should we take this into account in specifying the statistical model for the
analysis or appeal to the fact that under randomization such effects are washed (balanced)
out? There are three schools of thought:

1. Appeal to the randomization distribution because it allows causal inference. In effect,
stick with the randomized complete block analysis. If it does not work out because
blocking was carried out incorrectly, learn from the mistake and fix the problem the
next time a variety trial with fifty-six treatments is conducted.

2. Do not appeal to the randomization distribution and model the variability and effects
for this particular set of data. This is a modeling exercise determining which effects
are modeled as part of the mean structure X(s) and which effects are “soaked up” by
the error structure.

3. Appeal to randomization but also to the fact that stochastic elements beyond the ran-
domization of treatments to units are at work. In developing the analysis appeal to a
model where the errors are no longer independent and take expectation with respect to
the joint distribution of randomization and the spatial process.

The three approaches differ in what is considered the correct model for analysis and how
it is used. In (1) the correct model stems from the error-control, treatment, and observational
design components. Treatment comparisons will always be unbiased under this approach, but
can be inefficient if the design was not chosen carefully (as is the case in the Alliance-
Nebraska case). In (2) the analyst is charged to develop a suitable model. Statistical inference
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proceeds assuming that the selected model is correct. If a wrong model is used, treatment
comparisons will be biased. Since there is never unshakable evidence that the final model is
correct one can no longer make causal statements about the effect of treatments on the out-
come. Statistical inference is associative rather than causal. The third approach is a mixture
technique. It recognizes dependencies among the experimental units and the fact that treat-
ments are randomly assigned to the units. Expectations of mean squares are calculated first
over the randomization distribution conditional on the spatial process and then over the
spatial process (see, for example, Grondona and Cressie 1991).

In spatial analyses the observed data are considered a realization of a random field and
modeling the mean and dispersion structure proceeds in an observational manner. Whether a
spatial model will provide a more efficient analysis will depend to what extent large-scale and
small-scale trends are conducive to modeling. Besag and Kempton (1986) conclude that many
agronomic experiments are not carried out in a sophisticated manner. The reasons may be
convenience, unfamiliarity of the experimenter with more complex design choices, or tradi-
tion. We agree that it is hardly reasonable to conduct a field experiment with 56 treatments in
a randomized complete block design. An incomplete block design or a resolvable, cyclic de-
sign may have been more appropriate. Nevertheless, many experiments are still conducted in
this fashion. Bartlett (1938, 1978a) views analyses that emphasize the spatial context over the
design context as ancillary devices to salvage efficiency in experiments that could have been
designed more appropriately. Spatial random field models are more than salvage tools. They
are statistical models that describe the variation in data, whether the data stem from a de-
signed experiment or an observational study. By switching from a design-based analysis to
one based on modeling, the ability to draw causal inferences is sacrificed, however.

9.5.3 Parameter Estimation

In matrix-vector notation model [9.54] can be written as
Z(s) = X(s)B+ 8(s), &(s) ~ (0,%(6)) [9.56]

and the parameters of the model to be estimated are ¢ = [3,6]'. @ relates to the spatial
dependency structure and 3 to the large-scale trend. As models for 33(6) we usually consider
covariograms that are derived from the isotropic semivariogram models in §9.2.2, keeping the
number of parameters in @ small. Because we work with covariances, it is assumed that the
process is second-order stationary so that its covariogram is well-defined. Two general
approaches to parameter estimation can be distinguished. Likelihood and likelihood-type
methods which estimate € and @ simultaneously and least squares methods that estimate 3
given an externally obtained estimate of the spatial dependency.

Least Squares Methods

If 33(@) were known parameter estimates for 3 can be obtained by generalized least squares
(GLS):

Bars = (X'=(0)7'X) TX'2(6) " Z(s).

Since 33(@) is usually unknown we are faced with a similar quandary as in universal kriging.
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Estimating @ through semivariogram analysis requires detrending of the data, that is, an esti-
mate of 3. Efficient estimation of 3 requires knowledge of 8. The usual approach is to

1. Assume (8) = oI and fit the model by ordinary least squares to obtain Bors- ‘
2. Obtain the OLS residuals €(s) = Z(s) — X(s)Bors-
3. Fit a parametric, second-order stationary semivariogram based on the E(s) to obtain 8.

4. Use the estimates from the semivariogram fit to construct the 3:(6) matrix.

These steps can (and should) be iterated, replacing OLS residuals in step 2. with GLS
residuals after the first iteration. The final estimates of the mean parameters are estimated
generalized least square estimates

~ ~ -1 ~
Brors = (XS@)'X) X'B(0)72(s). [9.57]

The same issues as in §9.4.4 must be raised here. The residuals lead to a biased estimate
of the semivariogram of §(s) and Bors is an inefficient estimator of the large-scale trend
parameters. Since the emphasis in spatial random field linear models is often not on predict-
ing but on estimation and hypothesis testing about (3 these issues are not quite as critical as in
the case of universal kriging. If the results of a random field linear model analysis are used to
predict Z(sp) as a function of covariates and the spatial autocorrelation structure, the issues
regain importance.

Likelihood Methods

Likelihood methods circumvent these problems because the mean and covariance parameters
are estimated simultaneously. On the other hand they require distributional assumptions about
Z(s) or 6(s). If &(s) is a Gaussian random field, then twice the negative log-likelihood of
Z(s) is

(B, 8; 2(s)) = nin{27} + W[B(0)] + (2(s) — X(5)8) 2(8) " (2(s) — X(5)B).

and the maximum likelihood estimates B, 9,, minimize this expression. This process is
generally iterative and can be simplified by profiling the likelihood. This numerically effi-
cient method can be applied if some parameters have a closed-form solution given the others.
First consider @ fixed and known. Minimizing to(/3, @; z(s)) is then equivalent to minimizing
(z — X(s)B) 3(6) "} (z — X(s)B3). Since this is a generalized residual sum of squares, the
maximum likelihood estimate of 3 (given 8) is

Bes = (X'(6)7X) " X'(6) " Z(s).

The profiled (negative) log likelihood is obtained by substituting this expression back into
to(/3, 0;2(s)) which is then only a function of 6 and is minimized with respect to €. The
resulting estimate @) is the maximum likelihood estimate of @ and the MLE of 3 is

-~ ~ -1 ~
Bar = (X'DOM)X) X'S(@)Z(5). [9.58]
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The maximum likelihood ([9.58]) and estimated generalized least squares estimates
[9.57] are very similar. They differ only in the covariance parameter estimate that is being
substituted. To reduce the bias in maximum likelihood estimates of the covariance parameters
it is again recommended to perform restricted maximum likelihood estimation. The REML
estimates of the large-scale trend parameters are obtained as

—~ —~ -1 —~
Bp = (X'z(aR)-IX) X'5(0r)"1Z(s). [9.59]

Software Implementation

The three methods, GLS, ML, and REML, lead to very similar formulas for the [ estimates.
The mixed procedure in The SAS® System can be used to obtain any one of the three. The
spatial covariance structure of §(s) is specified through the repeated statement of the
procedure. In contrast-to clustered data models in §7, all data points are potentially auto-
correlated which calls for the subject=intercept option of the repeated statement.

Assume that an analysis of OLS residuals leads to an exponential semivariogram with
practical range 4.5, partial sill 10.5, and nugget 2.0. The spatial coordinates of the data points
are stored in variables x1loc and yloc of the SAS data set. The mean model consists of treat-
ment effects and a linear response surface in the coordinates. The following statements obtain
the EGLS estimates [9.57], preventing proc mixed from iteratively updating the covariance
parameters (noiter option of parms statement). The noprofile option prevents the profiling
of an extra scale parameter from ¥(0). The Table of covariance Parameter Estimates will
contain three rows entitled variance, sp (Exp), and Residual. These correspond to the partial
sill, the range, and the nugget effect, respectively. Notice that the parameterization of the
exponential covariogram in proc mixed considers the range parameter to be one third of the
practical range.

/* _____________________________________________________ *
/* Fit the model by EGLS for fixed covariogram estimates %/
it */

proc mixed data=RFLMExample noprofile ;
class treatment;
model Z = treatment xloc yloc xloc*yloc / s;
parms /* gill */ (10.5 )
/* range */ ( 1.5 )

/* nugget */ ( 2.0 ) / noiter;
/* The local option of the repeated statement adds the */
/* nugget effect */

repeated /subject=intercept local type=sp (exp) (xloc yloc);
run; quit;

Restricted maximum likelihood estimates are obtained N proc mixed with the statements

proc mixed data=RFLMExample noprofile ;
class treatment;
model Z = treatment xloc yloec xloc*yloc / s;
parms /* gill */ (6 to 12 by 2 )
/* range */ ( 0.5 to 3 by 1.5 )
/* nugget */ ( 1 to 4 by 1.0 );
repeated /subject=intercept local type=sp (exp) (xloc yloc);
run; quit;
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The noiter option was removed from the parms statement which prompts the procedure
to iteratively update the covariance parameter estimate 6. For each element of € a range of
starting values is given. This can considerably speed up estimation, which can require formi-
dable resources for large data sets. If the grid of starting values is too fine this is somewhat
counterproductive as the procedure then has to evaluate many combinations of possible start-
ing values before settling on the best set. The default estimation procedure for covariance
parameter estimation is restricted maximum likelihood and the code example above yields B 7
as in [9.59]. To obtain maximum likelihood estimates add the method=m1 option to the proc
mixed statement.

9.6 Autoregressive Models for L/attice Data

Box 9.10 Lattice M

9.6.1 The Neighborhood Structure

Lattice data are spAtial data where the index set I)/is a fixed, discrete subset of RY of count-
able points and Z (s) is 4 random variable at location s € D. Examples of lattice data are ob-
servations madé by census tract, county, or city blocks, data from field trials And remotely
sensed images$. Keeping with the literature o fattice data we call the locations § € D the sites
of the lattige. It is common to enumerate the countable set of sites in a lattjce, for example,
counties g census tracts can be numbered/from 1 to . Since the numbering in itself does not
convey any spatial information it is necgssary to define a location feature 0f each site such as
the county center or the seat of the colinty government. On rectangular fattices (field experi-
ments) the center of the unit is often/used or experimental units can be¢/identified by row and
column number.

Modeling the spatial dependence among observations via the gemivariogram or covario-
gram requires a smooth-scale spatial structure and a continuous gpatial process. With lattice
data other means of capturing the spatial dependence are needed. The notion of stationarity is
of somewhat questionable value for processes operating on ifregularly shaped area units or
partitions (census tracts, counties, landscapes, regions, states, etc.). Even if there exists an
underlying stationary continuous-space process, variances and covariances will not be the
same for all areas if the observations arise from different area integrations. Stationary co-
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p
variogram with range 88.754 m? fits the empirical semiva 'o/gram well. With a properly craft-
ed mean model the block total Z(A) can then be oyﬁz‘d by universal block-kriging. The
estimate of the total amount of lead so obtained is13.958 tons with a prediction stan

error of 1.68 tons. A 95% prediction interval for the total is thus [10.66 tons, 17.26 tons).
surface of the universal kriging predictions (Figure 9.44) differs little from back-trans
ordinary kriging predictions on the logarithpfic scale (Figure 9.43).
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9.8.4 Spatial Random Field Models — Comparing C/N Ratios
among Tillage Treatments

When data are collected under different conditions, such as treatments, an obvious question is
to determine whether the conditions are different from each other, and if so, how the dif-
ferences manifest themselves. In a classical field experiment contrasts among the treatment
means are estimated and tested to formulate statements about the differences among and
effects of the experimental conditions. If the data collected under various conditions are
autocorrelated, then one needs to rethink what precisely we mean by differences in the condi-
tions. We now return to the soil carbon data first introduced in §9.8.2. After ten years of a
corn-soybean rotation without tillage, intermediate strips of the field were chisel-plowed.
Two months after the soils were first chisel-plowed in the spring samples from 0 to 2 inch
depths were collected and total N percentage (T'V) and total carbon percentage (CIN') were
determined. The sampling locations and the strips are shown in Figure 9.45.

Since sampling occurred very soon after tillage we do not anticipate fundamental changes
in the T'C' and T'N values or the C/N ratio between the two treatments. Because of the spa-
tial sampling context and the presence of two conditions on the field, however, the data are
perfectly suited to demonstrate the basic manipulations and computations involved in a ran-
dom field analysis that involves treatment structure. We furthermore note from Figure 9.45
that the strips were not randomized. An analysis as a randomized experiment with subsam-
pling of six replications of two treatments is therefore tenuous. Instead, we analyze the data as
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a spatial random field with a mean structure given by the two treatment conditions and pos-
sible spatial autocorrelation among the sampling sites.
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Figure 9.45. Sampiing locations at which total soil NV (%) and total soil C' (%) were observed
for two tillage treatments. Treatment strips are oriented in East-West direction.

The target attribute for this application is the C/IN ratio and a simplistic pooled ¢-test
comparing the two tillage treatments leads to a p-value of 0.809 from which one would con-
clude that there are no differences in the average C /N ratios. This test does not account for
spatial autocorrelation treating the 195 samples on chisel-plow strips and 200 samples on no-
till strips as independent. Furthermore, it does not convey whether there are differences in the
spatial structure of the treatments. Even if the means are the same the spatial dependency
might develop differently. This, too, would be a difference in the treatments that should be
recognized by the analyst. Omnidirectional semivariograms were calculated with the
variogram procedure in The SAS® System and spherical semivariogram models were fit to
the empirical semivariograms (Figure 9.46) with proc nlin by weighted least squares:

proc sort data=CNRatio; by tillage; run;
proc variogram data=CNRatio outvar=svar;
compute lagdistance=13.6 maxlag=19 robust;
coordinates xcoord=x ycoord=y;
var cnj;
by tillage;
run;
proc nlin data=fitthis nohalve method=newton noiltprint;
parameters si11C=0.093 sillN=0.1414 rangeC=116.6 rangeN=157.2
nugget=0.1982;
if tillage='ChiselPlow' then
sphermodel = nugget + (distance <= rangeC)*sillC*(1.5%(distance/rangeC) -
0.5% ( (distance/rangeC)**3})) + (distance > rangeC)*sillC;
else
sphermodel = nugget + (distance <= rangeN)*sillN*(1.5%(distance/rangeN) -
0.5%( (distance/rangeN) **3)) + (distance > rangeN)*sillN;
model rvario = sphermodel;
_weight = 0.5*count/ (sphermodel**2);
run;
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In anticipation of obtaining generalized least squares and restricted maximum likelihood
inferences in proc mixed a common nugget effect was fit for both tillage treatments but the
sills and ranges of the semivariogram were varied. The sill and range estimates for the chisel-
plow treatment were 0.092 and 127 .0, respectively. The corresponding estimates for the no-
till treatment were 0.1397 and 199.2 (Output 9.13). Notice that to a considerable degree
variability in C'/ N ratios is due to the nugget effect. The relative structured variability is 31%
for the chisel-plow and 41% for the no-till treatment. The C /N ratio of the undisturbed no-
till sites is more spatially structured, however, as can be seen from the larger range.
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Figure 9.46. Omnidirectional empirical semivariograms for C' /N ratio under chisel-plow
(open circles) and no-till (full circles) treatments. Weighted least squares fit of spherical
semivariograms are shown.
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Next we obtain generalized least squares estimates of the treatment effect as well as
predictions of the C/N ratio over the entire field with proc mixed of The SAS® System. A
data set containing the prediction locations for both treatments (data set £iller) is created
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and appended to the data set containing the observations. The response variable of the filler
data set is set to missing values. This will prevent proc mixed from using the information in
the prediction data set for estimation. In calculating predicted values these observations can
be used, however, since they contain all information apart from the response.

data filler;
do tillage:‘ChiselPlow‘,‘NoTillage';
do x = 0 to 500 by 10; doy =20 to 300 by 10; cn=.; output; end; end;
end;
run;
data fitthis; set filler cnratlio; run;

proc mixed data=fitthis noprofile;
class tillage;
model CN = tillage /ddfm=contain outp=Dp;
repeated / subject=intercept type=sp (sph) (x ¥) local group=tillage;

parms /* sill ChiselbPlow */ 0.0920
/* range ChiselPlow */ 127.0
/* sill NoTillage */ 0.1397
/* range NoTillage */ 199.2
/* nugget (common) */ 0.2000 / noiter;
run;

The call to proc mixed has several important features. The model statement describes the
mean structure of the model. C /N ratios are assumed to depend on the tillage treatments. The
outp=p option of the model statement produces a data set (named p) containing the predicted
values. The repeated statement identifies the spatial covariance structure to be spherical
(type=sp (sph) (x Y) ). The subject=intercept option indicates that the data set comprises a
single subject, all observations are assumed to be correlated. The group=tillage option re-
quests that the spatial covariance parameters are varied by the values of the tillage variable.
This allows modeling separate covariance structures for the thisel-plow and no-till treatments
to reflect the differences in spatial structure evident in Figure 9.46. Finally, the local option
adds a nugget effect. Since proc mixed adds only a single nugget effect, it was important in
fitting the semivariograms to ensure that the nugget effect was held the same for the two
treatments. The parms statement provides starting values for the covariance parameters. The
order in which the values are listed equals the order in which the values appear in the
Covariance Parameter Estimates table of the proc mixed output. A trial run is sometimes
necessary to determine the correct order. The starting values are set at the converged iterates
from the weighted least squares fit of the theoretical semivariogram (Output 9.13). The
noiter option of the parms statement prevents iterations of the covariance parameters and
holds them fixed at the starting values provided. To produce restricted maximum likelihood
estimates of the covariance parameters, simply remove the noiter option. The noprofile
option of the proc mixed statement prevents profiling of the nugget variance. Without this
option proc mixed would make slight adjustments to the sill and nugget even if the /noiter
option is specified.

The Dimensions table indicates that 395 observations were used in model fitting and
3162 observations were not used (Output 9.14). The latter comprise the filler data set of
prediction locations for which the o variable was assigned a missing value. The -2 Res Log
Likelihood of 570.3 in the table of Fit statistics equals minus twice the residual log
likelihood in the parameter Search table. The latter table gives the likelihood for all sets of
starting values. Here only one set of starting values was used and the equality of the -2 Res
Log Likelihood values shows that no iterative updates of the covariance parameters took
place. The estimates shown in the Covariance Parameter Estimates table are identical to the
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starting values provided in the parms statement. Finally, the Type 3 Tests of Fixed Effects
table shows that there is no significant difference between the mean C /N ratios of the two
tillage treatments (p = 0.799). '

 Output 9.14. i
B The Mixed Procedure E
| ;
& R i
% Model Information g
d Data Set WORK . FITTHIS i
H Dependent Variable cn i
g Covariance Structures Spatial Spherical, i
F Local Exponential ﬁ
| Subject Effect Intercept |
i Group Effect : tillage i
5 Estimation Method REML i
- Residual Variance Method None i
B Fixed Effects SE Method Model-Based a
ﬂ ‘Degrees of Freedom Method Containment b
% Class Level Information g
! 3
g Class Levels Values 5
B tillage 2 ChiselPlow NoTillage 4
| mens: i
4 Dimensions %
i’ifi
" Covariance Parameters 5 @
E Columns in X 3 ﬁ
i Columng in Z 0 @
ﬁ Subjects 1 0
i Max Obs Per Subject 395 |
ﬁ Observations Used 395 %
| Observations Not Used 3162 |
g Total Observations 3557 @
: i
i £
% Parameter Search i
| CovPl Covp2 CovP3 Covp4 CovPs -2 Res Log Like i
Erj 0.09200 127.00 0.1397 199.20 0.2000 570.2618 F
H {j
17 ,
é Covariance Parameter Estimates %
ﬁ Cov Parm Subject Group Estimate g
g Variance Intercept tillage ChiselPlow 0.09200 g
% SP(SPH) Intercept tillage ChiselPlow 127.00 o
? Variance Intercept tillage NoTillage 0.1397 b
é SP (SPH) Intercept tillage NoTillage 199.20 Q
g Residual 0.2000 ?
g Fit Statistics %
i H
g -2 Res Log Likelihood 570.3 B
‘j AIC (smaller is better) 570.3 ;
% AICC (smaller is better) 570.3 :
f BIC (smaller is better) 570.3

Type 3 Tests of Fixed Effects

S ARt

g

Q Num Den
Effect DF DF F Value Pr > F
tillage 1 393 0.06 0.7990

B R TS

AT

o=k
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The predicted C /N surfaces for the two tillage treatments are shown in Figure 9.47.
Both surfaces vary about the same mean but the greater spatial continuity (larger range) of the
no-till sites is evident in a smoother, less variable surface. Positive autocorrelations are
stronger over the same distance under this treatment as compared to the chisel-plow treat-
ment. At this point it is worthwhile to revisit the question raised early in this application.
What do we mean by differences in experimental conditions if the observations collected
from each site have a spatial context? There is no difference in the average C'/N values in
this study as can be expected when sampling only two months after installment of the treat-
ments. There appear to be differences in the spatial structure of the treatments, however.
Fitting a single spherical semivariogram to the empirical semivariograms shown in Figure
9.46 a residual sum of square of 93.09 on 35 degrees of freedom is obtained. A sum of square
reduction test leads to

(93.09 — 53.2)/2
53.2/33

Fops = = 12.37

with a p-value of 0.00009. If the semivariogram is estimated by ordinary (instead of
weighted) least squares the statistics are Fp, = 11.85 and p = 0.0001. There are significant
differences among the treatments in the autocorrelation structure, albeit not in the average
C/N ratio. One can argue that after ten years of continuous no-till management there 1s
greater continuity in the C// IV ratios compared to what can be observed shortly after a distur-
bance through plowing.
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Figure 9.47. Predicted C'/ N surface under chisel-plow and no-till treatments.

The predicted surfaces in Figure 9.47 were obtained from the generalized least squares fit
which assumed that the supplied starting values of the covariance parameters are the true
values. This is akin to the assumption in kriging methods that the semivariogram values used
in solving the kriging equations are known. Removing the noiter option of the parms state-
ment in proc mixed the spatial covariance parameters are updated iteratively by the method of
restricted maximum likelihood. Twice the negative residual log likelihood at convergence can
be compared to the same statistic calculated from the starting values. This likelihood ratio test
indicates whether the REML estimates are a significant improvement over the starting values.
The mixed procedure displays the result of this test in the PARMS Model Likelihood Ratio
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Test table (Output 9.15). In this application convergence was achieved after twelve time-con-
suming iterations with no significant improvement over the starting values (p = 0.1981).

TR G GriyeeRAven TR AL

FORMIERITY

| Output 9.15. (abridged)

The Mixed Procedure

Fit Statistics

R N S RO s

T AR S T e g

i -2 Res Log Likelihood 562.9
| AIC (smaller is better) 572.9
% AICC (smaller is better) 573.1
i BIC (smaller is better) 592.8
i

PARMS Model Likelihood Ratio Test
DF Chi-Square Pr > Chisqg
5 7.32 0.1981

R T TR
1

P e ———

e
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9.8.5 Spatial Random Field Models — Spatial Regression of
Scil Carbon on Soil N

In the previous application C/N ratio was modeled directly and compared between the two
tillage treatments. In many applications one attribute emerges as the primary variable of in-
terest and other variables are secondary attributes which are to be linked to the primary attrib-
ute. This approach is particularly meaningful if the secondary attributes are easy to measure
or available in dense coverage (e.g., sensed images, GIS) and the primary attribute is more
difficult to determine. If the relationship between primary and secondary attributes can be
modeled for a particular data set where both variables have been measured, the model can
then be applied to situations where only the secondary attributes are available. Consider that
we are interested in predicting soil carbon as a function of soil nitrogen. From Figure 9.48 it
is clearly seen that the relationship between T'C' and T'N is very strong (R? = 0.916), close
to linear, and differs not between the two tillage treatments.
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Figure 9.48. Relationship between total C' (%) and total IV (%) of chisel-plow and no-till
areas.
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